A New Method for the Preparation of Non-Terminal Alkynes: Application to the Total Synthesis of Tulearin A and C

Lehr, K.; Schulthoff, S.; Ueda, Y.; Mariz, R.; Leseurre, L.; Gabor, B.; Fürstner, A.

Chem. Eur. J. 2015, 21, 219-227

Tanja Krainz
Current Literature
Wipf Group Meeting, March 28, 2015

Tulearin Natural Products

Isolated from marine Madagascan sponge Fascaplysinopsis genus (Salary Bay north of Tulear)

Biological activity:

- ☐ Tulearin A exhibits potent antiproliferative activity against 2 human leukemic cell lines (K562, UT7).
- □ ~60% inhibition of proliferation with 0.5µg/mL

Org. Lett, 2008, 10, 153-156

Synthesis of a Stereoisomer of Tulearin A

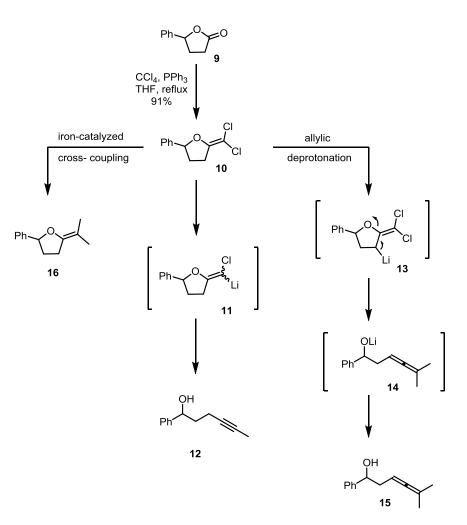
- Cossy and Curran were the first to synthesize an unnatural isomer of Tulearin A via ring closing olefin metathesis
- □ Relative and absolute stereochemistry were assigned by X-Ray crystallography by Kashman and co-workers in 2009.

Fürstner's Approach: Retrosynthetic Analysis

Synthesis of Non-Terminal Alkynes

Entry	RLi	Solvent	Temp [°C]	t [h]	Additives (mol%)	Yield [%] ^b
1	MeLi (2.1ed	ր) Et ₂ O	RT	96		50°
2	MeLi (5eq)	Et ₂ O	RT	48		90
3	MeLi	THF	RT	2		80 (GC)
4	MeLi	Et ₂ O	RT	4	Cu(acac) ₂ (10)	89
5	MeLi	Et ₂ O	RT	2	Fe(acac) ₃ (10) + 1,2-diaminobenzene (50)	70
6	<i>n</i> BuLi	Et ₂ O	RT	4		76
7	sBuLi	Et ₂ O	-78	1		84
8	<i>t</i> BuLi	Et ₂ O	-78	1		82
9	PhLi	Et ₂ O	-78	<1		[d]
10	Me ₃ SiCH ₂ L	i Et ₂ O	RT	4		86
11	Me ₂ PhSiLi	Et ₂ O	-78	6		83

Cu(acac)₂ and Fe(acac)₃ catalysts facilitate the metal/halogen exchange


Talla Man Brille Zn gave no conversion

[☐] PhLi was unsuitable (got readily oxidized with formation of biphenyl)

Mechanistic Explanation

Pathway B supported by a control experiment using 1-chloro-1-heptyne: treatment with MeLi merely furnished 1-heptyne after aqueous work-up suggesting that a lithium acetylide was formed but not trapped by the methyl chloride generated in situ.

Optimization Studies of γ-Butyrolactone Derived *gem*-Dichloro-Olefins

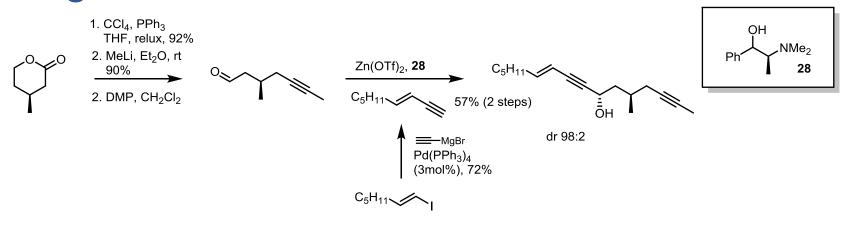
				Yield [%]			
Entry	Solvent	t [h]	Additives [mol%]	12	15	16	
1	Et ₂ O	72	-	60	10	<5 (GC)	
2	THF	3	-	25	58	<5 (GC)	
3	Et ₂ O	20	Cu(acac) ₂ (10)	58	5 (GC)	<5 (GC)	
4	Et ₂ O	4	FeCl ₂ (10)	32	<5 (GC)	46	
5	Et ₂ O	2	Fe(acac) ₃ (5) + 1,2-diaminobenzene (25)	85	<5 (GC)	<5 (GC)	
			, ,				

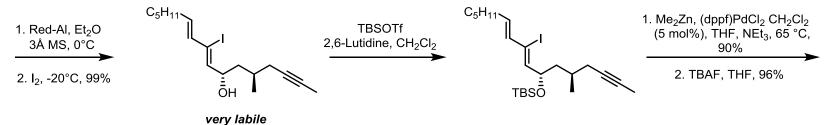
Suppression of allene unit by addition of catalytic amounts of Cu(acac)₂ or Fe(acac)₃/1,2-diaminobenzene

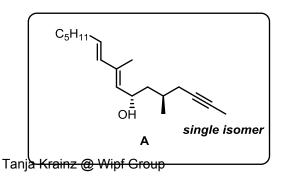
Scope of Methodology

	Dichloro olefinatio			Dichloro- olefination					
Substrate	[%]	Method	Product	Yield [%}	Substrate	[%]	Method	Product	Yield [%}
	81	С	но	92		30	В		≥ 80 ○ OH
) [d]	В	но	56		88	A C	OH	<20 60
	92	A B C	HO	90 77 85	Ph O=0	91	Α	OH Ph	58
	95	A B	но	89 88			D	OH Ph	85
O	92	В	но	88	RO 0=0	87 62 88	D	RO	R=MOM, 83% R=PMB, 69% R=Bn, 70%
\bigcirc	92	B I	40~~~	88	Ŭ, EO	95	Α	H OH	84 I
_i (5eq), Et ₂ Li (5eq), TF	IF, rt	Method	C: MeLi (5 eq), I D: MeLi (5eq), E	t ₂ O, Fe(ad	cac) ₃ (5-10 mo		D	H OF	80 H

Method A: MeLi Method B: MeLi Tanja Krainz @ Wipf Group


1,2-diaminobenzene (25-ഉള്ള രിശ്)5rt


5/1/2015

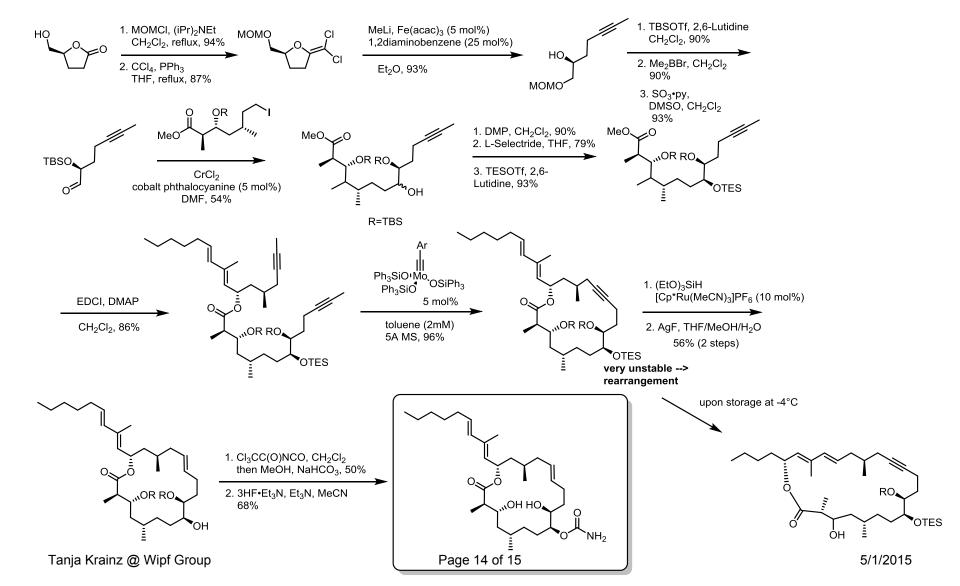

Substrate Limitations

Decomposition for substrates containing oxygen substituents α and/or β to the former lactone carbonyl

Total Synthesis of Tulearin C: Synthesis of Fragment A

Page 10 of 15 5/1/2015

Synthesis of Fragment B



Synthesis of Fragment B

Tanja Krainz @ Wipf Group Page 12 of 15 5/1/2015

End Game Strategy

Total Synthesis of Tulearin A

Conclusion

- New methodology affords non-terminal alkynes in excellent yield
- Methodology offers entry into chiral building blocks required for both total syntheses in excellent yield and optical purity
- Highlights the *remarkable selectivity profile* of the latest generation Mocatalysts